Comment mesurer la performance d’un modèle ?

Dans cet article j’ai envie de vous parler de la performance des modèles au sens large (classification ou régression). Il y a déjà pas mal d’articles pour comprendre les algorithmes (Arbre de décision, Random Forest, Gradient Boosting, …) mais je n’avais pas encore abordé leur évaluation. Pourtant c’est un sujet essentiel. Peu importe votre projet, vous serez forcément amené(e) à devoir évaluer la performance de votre modèle pour mesurer les risques mais également pour comparer plusieurs algorithmes ou plusieurs versions de votre algorithme. Dans cet article je vais vous présenter la démarche globale de mesure de la performance des modèles puis plusieurs articles vous présenteront ensuite les indicateurs à utiliser en fonction du type de modèles.

Lire la suite de « Comment mesurer la performance d’un modèle ? »

Random Forest, tutoriel pas à pas avec R

Apprenez à utiliser un Random Forest avec R

lovely analytics Random Forest

L’algorithme Random Forest (forêt aléatoire) fait partie de la famille des modèles d’agrégation et donne de très bons résultats dans la plupart des problématiques de prédiction. Je vous propose dans ce tutoriel de voir comment appliquer un algorithme Random Forest avec R de la préparation des données jusqu’à la restitution des résultats.

Lire la suite de « Random Forest, tutoriel pas à pas avec R »

CAH : Classification ascendante hiérarchique

Apprenez à utiliser simplement une CAH en comprenant le fonctionnement de l’algorithme.

Exemple de dendrogramme pour une CAH

La CAH (classification ascendante hiérarchique) est un algorithme de machine learning de la catégorie non supervisée. Comme les k-means, elle permet d’identifier des groupes homogènes dans une population, on parle aussi de clustering. C’est une de mes méthodes préférées. Nous allons voir quels sont les avantages et les inconvénients de la CAH, quand l’utiliser avec des explications simples sur son fonctionnement.

Lire la suite de « CAH : Classification ascendante hiérarchique »

Apprenez à utiliser 6 algorithmes de machine learning sur R

Apprendre à coder 6 algos avec R

Tutoriel 6 algos.png

GitHub vous connaissez? Je vous en parlais dans un article ici. J’y ai trouvé un tutoriel très intéressant qui présente 6 algorithmes d’apprentissage supervisé avec des détails pour les implémenter sur R. C’est idéal pour se former ou pour revoir ses bases. Je vous en dis un peu plus sur les 6 algorithmes en question :

Lire la suite de « Apprenez à utiliser 6 algorithmes de machine learning sur R »

k-means, comment ça marche?

k-means


Le k-means est un algorithme de clustering, en d’autres termes il permet de réaliser des analyses non supervisées, d’identifier un pattern au sein des données et de regrouper les individus ayant des caractéristiques similaires. C’est une méthode simple et rapide.

Le cas d’usage le plus classique pour les méthodes de clustering c’est la segmentation client. On peut aussi les utiliser de manière plus descriptive pour comprendre et synthétiser une population. En revanche, pour construire une segmentation client robuste, avec plusieurs axes je vous recommande plutôt d’utiliser la classifiation ascendante hiérarchique ou la méthode mixte. Lire la suite de « k-means, comment ça marche? »