Comment faire quand la CAH est dépassée?

3 solutions pour faire des clusters avec de gros volumes de données

lovely analytics CAH.png

La CAH permet de créer des groupes d’individus homogènes, c’est une méthode de clustering et elle donne vraiment de bons résultats. L’inconvénient de cette méthode c’est que les temps de calcul peuvent être très longs lorsque le nombre de clients à segmenter augmente. Certains outils refusent même de calculer une CAH à partir d’un certain seuil.

Problème : Comment faire un clustering efficace quand le nombre d’individus devient tellement important qu’on ne peut plus utiliser la CAH?

Lire la suite de « Comment faire quand la CAH est dépassée? »

CAH : Classification ascendante hiérarchique

Apprenez à utiliser simplement une CAH en comprenant le fonctionnement de l’algorithme.

Exemple de dendrogramme pour une CAH

La CAH (classification ascendante hiérarchique) est un algorithme de machine learning de la catégorie non supervisée. Comme les k-means, elle permet d’identifier des groupes homogènes dans une population, on parle aussi de clustering. C’est une de mes méthodes préférées. Nous allons voir quels sont les avantages et les inconvénients de la CAH, quand l’utiliser avec des explications simples sur son fonctionnement.

Lire la suite de « CAH : Classification ascendante hiérarchique »

Comment réussir sa segmentation client?

segmentation-clientUn grand classique du marketing c’est la segmentation client. Il en existe plusieurs sortes mais elles ont toutes le même objectif, celui de passer d’une vision complexe et individuelle des clients à une vision agrégée en créant des groupes de clients suivant leur ressemblance. Certains pièges sont à éviter pour construire une segmentation efficace pour les équipes marketing

Lire la suite de « Comment réussir sa segmentation client? »